

Wettability and infiltration of molten Si on SiO₂ substrate containing porous Si₃N₄ coating: Influence of α -Si₃N₄ coating and β -Si₃N₄ coating

Xiaowei Zhang^a, Qinghu Wang^a^{*}, Yawei Li^a, Jiangtao Li^b, Lei Jiang^b

^aWuhan University of Science and Technology;^bTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences.

October 15-18, 2024 Chengdu, China

> Fused silica crucible is the key melting vessel for the growth of PV silicon

Directional solidification

The α-Si₃N₄ coating effectively improve the wettability and infiltration behaviors of Si/SiO₂ binary system.

Why can α -Si₃N₄ coating improve the contact angle and infiltration behavior between Si and SiO₂?

> The mechanism of α -Si₃N₄ as coating material

 $Si/SiO_2 = 83 \sim 88^{\circ}$ near non-wetting Si/Pore = 180° non-wetting $Si/(SiO_2$ +porous coating) >90^{\circ} non-wetting

prede-oxidation Convexity $\rightarrow \theta_{OX} > 90^{\circ}$

- Ap and G keep balance with opposite vector direction
- lower the infiltration

postde-oxygenation Concavity $\rightarrow \theta_{OX} < 90^{\circ}$

- Δp and G with the
- same vector direction
- faster the infiltration

The SiO₂ film on the surface of α -Si₃N₄ particles in porous coating is the key to achieve nonwetting and no infiltration.

However, it is of importance to develop a low cost coating material of β -Si₃N₄.

> The wetting and infiltration behavior of β -Si₃N₄ coating on Si/Si₃N₄/SiO₂ system

- ➤ The characterization of Si₃N₄ powders
- The O content of both Si_3N_4 powders are similar.

- > The characterization of coatings
- The three porous Si_3N_4 coatings with similar thickness were prepared by pre-oxidizing at 900°C for 1 h.

> The wetting behavior of α -Si₃N₄ coating

- The Si/ α -Si₃N₄ kept non-wetting at the end of mlting process.
- The α -Si₃N₄ coating exhibited the longest non-wetting duration of 5779s.

- > The wetting behavior of β -Si₃N₄ coating
- The β -Si₃N₄ coating exhibited the shortest non-wetting duration of 2836s.

10/19

- > The wetting behavior of silica sol modified β -Si₃N₄ coating
- The silica sol modified β -Si₃N₄ coating exhibited the non-wetting duration of 4640s.
- Compared with β -Si₃N₄ coating, the non-wetting duration of silica sol modified β -Si₃N₄ coating extended effectively.

- > The infiltration behavior of Si on various coating surfaces (beyond Si drop)
- The infiltration area of Si on the substrate coated different Si_3N_4 coatings is various.
- The C- α and C- β O have the silimar infiltration aeras, which is smaller than that of C- β .

- > The longitudinal infiltration behavior of Si on α -Si₃N₄/SiO₂ substrate
- The α -Si₃N₄ coating inhibited the infiltration of Si, only part of Si infiltration on coating.
- The detachment of Si and SiO₂ was separated with marco-cracks.

> The longitudinal infiltration behavior of Si on β -Si₃N₄/SiO₂ substrates

- The β -Si₃N₄ coating was completely infiltrated by molten Si.
- Si and SiO₂ substrate could not be separated due to interlock structure at Si/SiO₂ interface.

> The longitudinal infiltration behavior of Si on silica sol modified β -Si₃N₄/SiO₂ substrates

- Compared with S-β coating, the infiltration behavior of S-βO coating were improved effectively.
- The coating was partially infiltrated by molten Si. The detchment of Si and SiO₂ can be achieved with macro-cracks.

- > The mechanism of de-oxidation process during wetting experiment
- The differences of wetting and infiltration behaviors can be attributed to the de-oxidation process of reactions.
- The interface behavior of Si/β - Si_3N_4 coating can be improved by adding the O content.

> The O content of Si_3N_4 coating is the key factor of interface behavior with molten Si.

- The mass gain gap between α -Si₃N₄ and β -Si₃N₄ is 0.65% due to the different oxidizability during the pre-oxidation process.
- The thickness of SiO₂ film of α -Si₃N₄ is 3.77nm, which is more than twice that of β -Si₃N₄ (1.74nm).

- Compared with α-Si₃N₄ coating, Original β-Si₃N₄ coating presents much shorter wettability transformation duration (from non-wetting to wetting) and severe infiltration by Si melt, due to its lower O content.
- ➢ By increasing O content in β-Si₃N₄ coating with SiO₂ sol, wettability transformation and infiltration are delayed significantly because of increased O evacuation time..
- β-Si₃N₄ can be applied as novel coating material for photovoltaic Si preparation by reasonable
 O modification.

It's of great importance for reducing the cost of coating and realizing the application of β -Si₃N₄.

