

R The International Symposium on Refractories

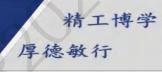
Preparation and Properties of Oriented Steel Fiber Reinforced Refractory Castable 取向钢纤维增强耐火浇注料制备及其性能

2024.10 Cheng Du · China

钢纤维增强耐火浇注料,广泛应用于钢铁冶金、石油化工等高温工业的关键服役部位,工作环境恶劣,冲刷、磨损严重。

Steel fiber reinforced refractory castables are widely used in steel metallurgy and other high-temperature industries in critical service parts, where the working environment is very serious.

将钢纤维加入到耐火浇注料中会大幅提高材料的断裂韧性,改善材料的抗热震、抗机械震动和抗冲击性, 延缓和减少材料的裂纹扩展和剥落。


Adding steel fibers to refractory castables will substantially increase the fracture toughness of the material, improve its resistance to thermal shocks, mechanical vibration and impacts, delay and reduce cracks expansion and spalling.

钢纤维对材料的增强增韧作用在不考虑温 度影响下可以通过复合材料理论或纤维间距理 论来解释。

The reinforcing and toughening effect of steel fibers on the material can be explained by composite material theory or fiber spacing theory without considering the effect of temperature.

除了钢纤维长度、直径与体积百分比外, 钢纤维的方向分布也是影响钢纤维增强增韧效 果的关键因素。

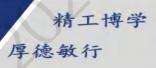
In addition to the length, diameter and volume percentage of steel fibers studied above, the directional distribution of steel fibers is also a key factor affecting the reinforcing and toughening effect of steel fibers.

 $\sigma_c = \sigma_m (1 - V_f) + \eta_l \eta_\theta \tau \frac{l}{d} V_f$

式(1)中: σ_c -钢纤维复合材料强度; σ_m -基体材料强度; V_f -钢纤维体积率; η_l -钢纤维有限长度系数; η_{θ} -钢纤维方向系数; τ -钢纤维与基体粘结强度;l-钢纤维长度;d-钢纤维直径。

Where σ_c represents the strength of the steel fiber composite material, σ_m is the strength of the matrix material, V_f is the volume fraction of steel fibers, η_{θ} is the orientation factor of steel fibers, η_1 denotes the effective length coefficient of steel fibers, τ is the bond strength between steel fibers and the matrix, 1 is the length of steel fibers, and d is the effective diameter of steel fibers. 3

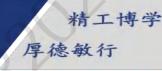
精工博学 厚德敏行


Type

在实际服役条件下,载荷和工况一般固定,耐火浇注料的受力方向基本一致,浇注料中钢纤维仅有少部分取向于载荷或热应力方向,导致钢纤维增强增韧功效未充分发挥,影响钢纤维浇注料的使用性能。

Under the service conditions, the load and working conditions are generally fixed. The stress direction of refractory castables is basically the same, and only a small part of the steel fibers in the castables are oriented in the direction of load or thermal stress, which results in the enhancement of toughening effect of the steel fibers not being brought into full play, thus affecting the performance of the steel fiber castables.

RSFRRC

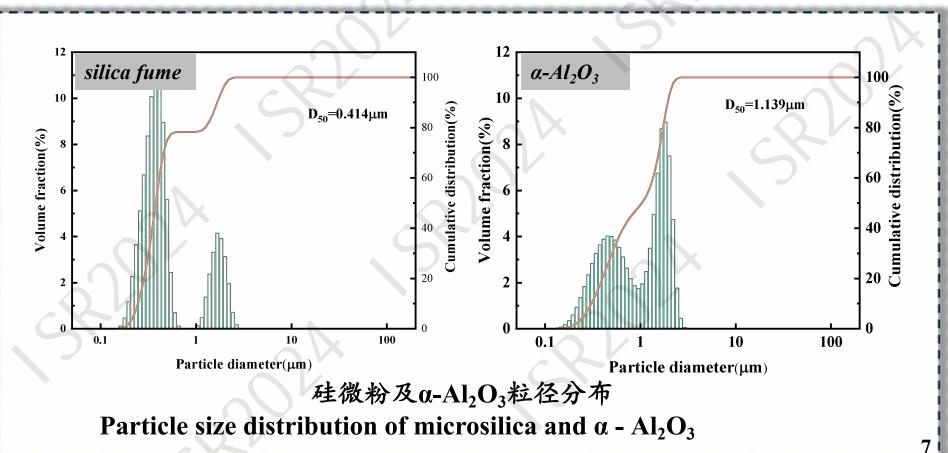

Random steel fiber reinforced mullite castable

OSFRRC

Oriented steel fiber reinforced refractory castable

然而,目前关于耐火浇注料中钢纤维分布方 向对材料性能的影响的研究还未见任何文献报道。 本工作以莫来石钢纤维浇注料为研究对象,成功 制备了取向钢纤维浇注料,并研究了其性能。 However, there are few studies on the influence of steel fiber direction distribution in refractory castables. This work took mullite steel fiber castable as the research object, successfully prepared oriented steel fiber reinforced castable, and studied its properties.

钢纤维增强莫来石浇注料配方


Compositions of Steel fiber reinforced mullite refractory castables

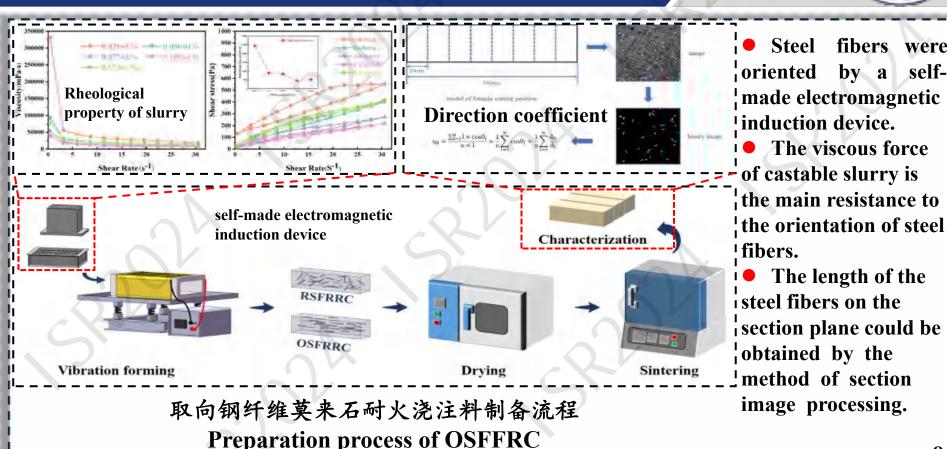
raw material	S0/wt.%	S2/wt.%	S4/wt.%	S6/wt.%	S8/wt.%
Mullite aggregates (5-3mm, 3-1mm, 1-0mm)			43		
Andalusite aggregates (3-1mm, 1-0mm)			21	C	
Silicon carbide			2.5		
Mullite powder			6		
Alumina powder			9		
a-Al ₂ O ₃	11	9	7	5	3
Silica fume	0	2	4	6	8
Secar 71			5		
FS20			0.075		
steel fiber			2.5		
DI water			4		

厚德敏行

精工博学

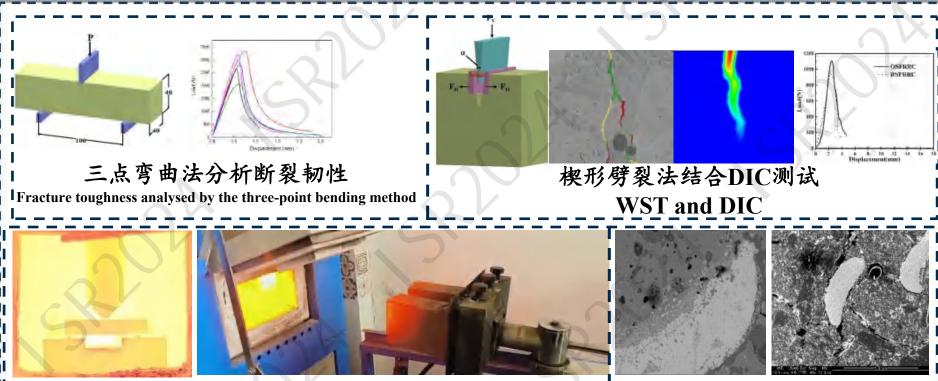
精工博学 厚德敏行

Steel



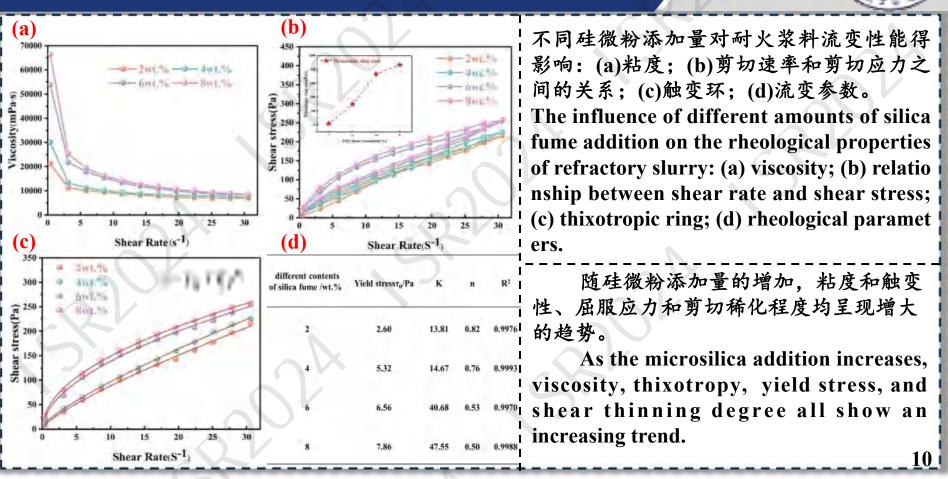
were

self-


fibers

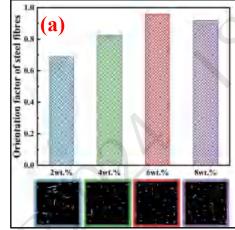
by a

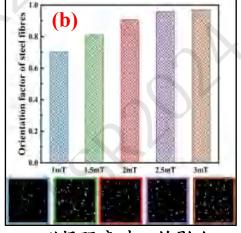
精工博学厚德敏行

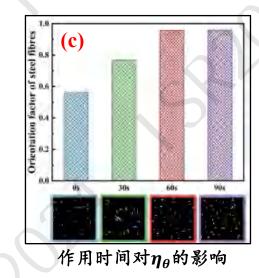


物理性能、力学性能与热震稳定性 Physical properties, mechanical properties and thermal shock resistance 微观结构分析 Microstructure analysis

厚德敏行

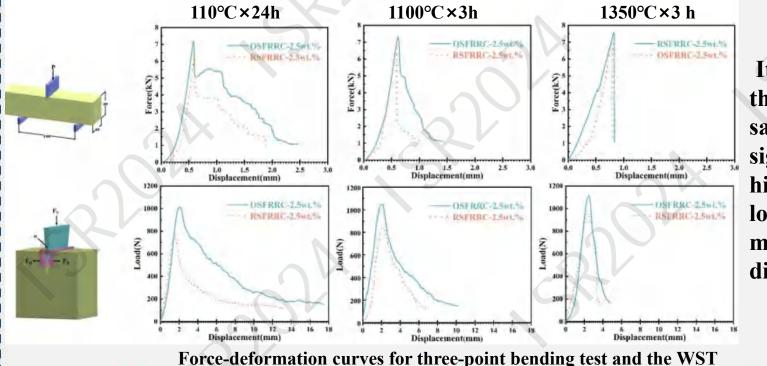

精工博学


精工博学厚德敏行


OSFRRC制备 Preparation of OSFRRC

硅微粉添加量对 η_{θ} 的影响

磁场强度对 η_{θ} 的影响

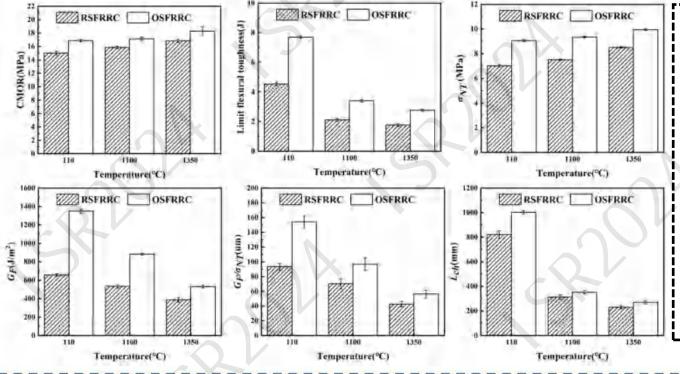

Effect of silica fume addition on η_{θ} Effect of magnetic field strength on η_{θ} Effect of action time on η_{θ} The optimum preparation process parameters of OSFFRC are microsilica addition 6 wt.%, magnetic field strength 2.5 mT, action time 60s, while the $\eta\theta$ reached an impressive value of 0.96, indicating a remarkably high alignment of the steel fibers within the castable.

精工博学 厚德敏行

■ 力学性能及其增强增韧机理

Mechanical properties and its strengthening and toughening mechanism

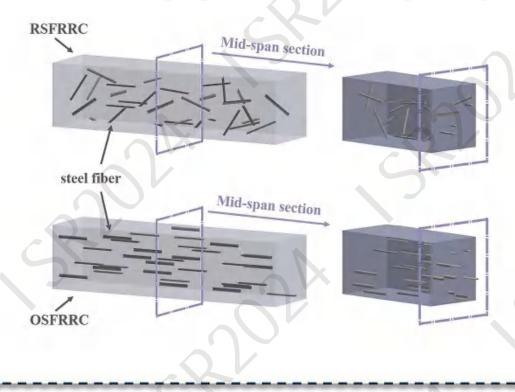
It is evident that OSFRRC samples exhibit significantly higher peak loads and maximum displacements.


12

精工博学 厚德敏行

■ 力学性能及其增强增韧机理

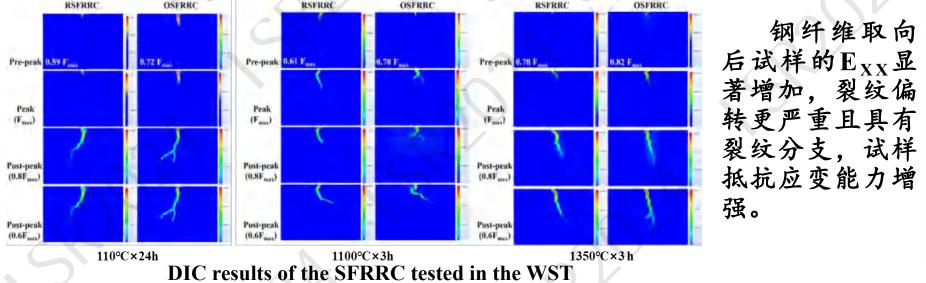
Mechanical properties and its strengthening and toughening mechanism



钢纤维取向使浇 注料力学性能和断裂 能有大幅度的提升。 The OSFRRC samples also exhibit higher CMOR and fracture energy G_F indicating that the orientation of steel fibers significantly improves the mechanical properties and toughness of castables.

■ 力学性能及其增强增韧机理 Mechanical properties and its strengthening and toughening mechanism

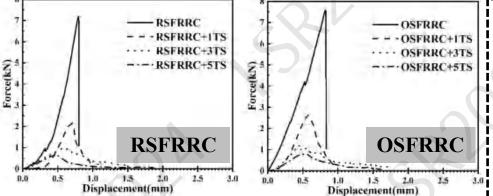
钢纤维的取向增加了桥接浇注 料失效面裂纹的钢纤维的数量,能 充分发挥桥接裂缝的作用,这极大 的提高了OSFRRC试样的强度和韧 性。


The orientation of steel fibers increases the number of steel fibers bridging cracks on the failure surface of castables, which can fully play the role of bridging cracks, greatly improving the strength and toughness of OSFRRC samples.

精工博学厚德敏行

■ 力学性能及其增强增韧机理

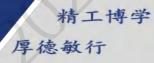
Mechanical properties and its strengthening and toughening mechanism



OSFRRC samples exhibit more severe crack deflection and branching. The deflection and branching of cracks make the path of crack propagation intricate, thereby enhancing the stress resistance of the samples. 15

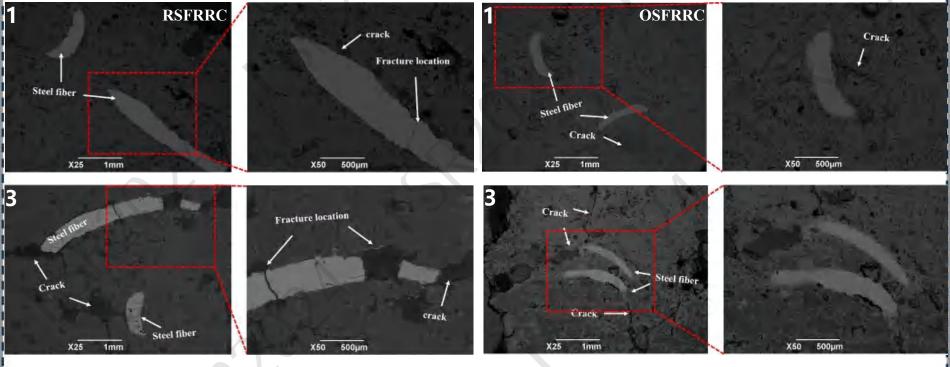
精工博学厚德敏行

■ 热震稳定性 Thermal Shock Resistance of OSFRRC


Load-displacement curves before and after thermal shock tests

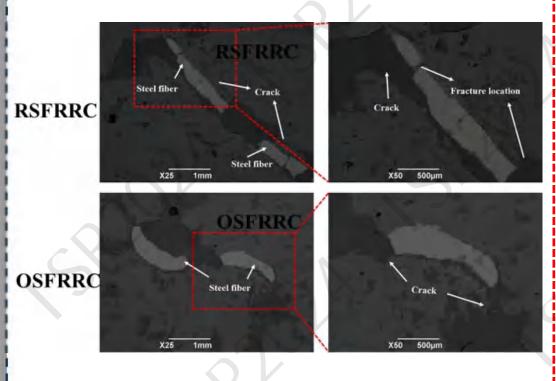
CMOR retention rate before and after thermal shock tests

	Number of thermal	CMOR after thermal	CMOR	
	shock cycles/times	shock/MPa	retention rate/%	
RSFRRC	1	6.70	39.69	
	3	2.75	16.29	
	5	1.91	11.25	
OSFRRC	1	7.90	43.92	
	3	3.43	19.06	
	5	2.51	13.90	


钢纤维取向使试样的残余抗折强 度保持率有较大提升。随着热震冲 击周期增加,试样的断裂行为变得 更加非线性。

The orientation of steel fiber greatly improves the retention of the residual CMOR of the samples. With the increase of thermal shock cycles, the fracture behavior of samples becomes more nonlinear.

■ 热震稳定性 Thermal Shock Stability of OSFRRC



BSE images of samples after thermal shocks

精工博学厚德敏行

■ 热震稳定性 Thermal Shock Stability of OSFRRC

随着热震次数的增加,RSFRRC 中的钢纤维附近出现连续且相对较宽的 裂纹,并伴有明显的钢纤维断裂;在 OSFRRC中,裂纹在钢纤维周围的扩 展显示出明显的偏转或者裂纹消失。

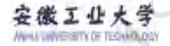
Following thermal shock treatment, continuous and relatively wide cracks become evident near the steel fibers in RSFRRC, leading to significant fracture of the steel fibers. In contrast, in OSFRRC, crack propagation toward the steel fibers shows noticeable deviation and ultimately disappears.

Conclusion

精工博学 厚德敏行

✓ 硅微粉添加量为6wt.%, 磁场作用时间≥60s, 磁场强度≥2.5mT时, 成功制备了 η_{θ} 为0.96的取向 钢纤维增强耐火浇注料。(When the addtion of silica fume was 6wt.%, the magnetic field action time was 60s and the magnetic field strength is 2.5mT, oriented steel fiber reinforced refractory castables with an η_{θ} of 0.96 were successfully prepared.)

✓ 钢纤维取向增强了其在浇注料基体内部桥接裂纹和分散应力的有效性,大幅提高了材料断裂韧性;钢纤维取向莫来石浇注料在断裂过程中,裂纹扩展路径变得复杂(分支、偏转),增强了抵抗裂纹扩展能力。(The orientation of steel fibers enhances their effectiveness in bridging cracks and dispersing stress within the castable matrix, and greatly improves the fracture toughness of the material. During the fracture process of OSFFRC, the crack propagation path becomes more complex (branching, deflection), enhancing the ability to resist crack propagation.)


✓ 钢纤维取向可以明显改善浇注料的抗热震性,并优化热震后试样的非线性断裂行为。(The orientation of steel fibers can significantly improve the thermal shock resistance of castables, and optimize the nonlinear fracture behavior of samples after thermal shocks.)

THANK YOU!

精工博学 厚德敏行